Representation theoretic embedding of twisted Dirac operators

نویسندگان

چکیده

Let G G be a non-compact connected semisimple real Lie group with finite center. Suppose L"> L encoding="application/x-tex">L is closed subgroup of acting transitively on symmetric space G slash upper H"> / H encoding="application/x-tex">G/H such that L intersection ∩ encoding="application/x-tex">L\cap H compact. We study the action encoding="application/x-tex">L/L\cap Dirac operator D Subscript H Baseline left-parenthesis E right-parenthesis"> D ( E stretchy="false">) encoding="application/x-tex">D_{G/H}(E) sections an E"> encoding="application/x-tex">E -twist spin bundle over . As byproduct, in case alttext="left-parenthesis comma right-parenthesis equals S 2 double-struck R times normal Delta O , = S 2 R × O encoding="application/x-tex">(G,H,L)=(SL(2,{\mathbb R})\times SL(2,{\mathbb R}),\Delta (SL(2,{\mathbb R})),SL(2,{\mathbb SO(2)) , we identify certain representations which lie kernel

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Twisted higher spin Dirac operators

In this paper, we define twisted higher spin Dirac operators and explain how these invariant differential operators can be used to define more general higher spin Dirac operators acting on functions f(x) on R which then take values in general half-integer representations for the spin group. Mathematics Subject Classification (2010). 30G35, 42B35.

متن کامل

Twisted Dirac Operators over Quantum Spheres

We construct new families of spectral triples over quantum spheres, with a particular attention focused on the standard Podleś quantum sphere and twisted Dirac operators.

متن کامل

Harmonic Spinors for Twisted Dirac Operators

We show that for a suitable class of “Dirac-like” operators there holds a Gluing Theorem for connected sums. More precisely, if M1 and M2 are closed Riemannian manifolds of dimension n ≥ 3 together with such operators, then the connected sum M1#M2 can be given a Riemannian metric such that the spectrum of its associated operator is close to the disjoint union of the spectra of the two original ...

متن کامل

Twisted Representation Rings and Dirac Induction

Extending ideas of twisted equivariant K-theory, we construct twisted versions of the representation rings for Lie superalgebras and Lie supergroups, built from projective Z2-graded representations with a given cocycle. We then investigate the pullback and pushforward maps on these representation rings (and their completions) associated to homomorphisms of Lie superalgebras and Lie supergroups....

متن کامل

The Spectrum of Twisted Dirac Operators on Compact Flat Manifolds

Let M be an orientable compact flat Riemannian manifold endowed with a spin structure. In this paper we determine the spectrum of Dirac operators acting on smooth sections of twisted spinor bundles of M , and we derive a formula for the corresponding eta series. In the case of manifolds with holonomy group Z2 , we give a very simple expression for the multiplicities of eigenvalues that allows t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Representation Theory of The American Mathematical Society

سال: 2021

ISSN: ['1088-4165']

DOI: https://doi.org/10.1090/ert/583